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Abstract—Message Passing Interface (MPI) implementations
provide a great flexibility to allow users to arbitrarily bind
processes to computing cores to fully exploit clusters of multi-
core/many-core nodes. An intelligent process placement can
optimize application performance according to underlying
hardware architecture and the application’s communication
pattern. However, such static process placement optimization
can’t help MPI collective communication, whose topology is
dynamic with members in each communicator. Conversely, a
mismatch between the collective communication topology, the
underlying hardware architecture and the process placement
often happens due to the MPI’s limited capabilities of dealing
with complex environments.

This paper proposes an adaptive collective communication
framework by combining process distance, underlying hard-
ware topologies, and runtime communicator together. Based
on this information, an optimal communication topology will
be generated to guarantee maximum bandwidth for each MPI
collective operation regardless of process placement. Based on
this framework, two distance-aware adaptive intra-node col-
lective operations (Broadcast and Allgather) are implemented
as examples inside Open MPI’s KNEM collective component.
The awareness of process distance helps these two operations
construct optimal runtime topologies and balance memory
accesses across memory nodes. The experiments show these
two distance-aware collective operations provide better and
more stable performance than current collectives in Open MPI
regardless of process placement.

Keywords-MPI, Collective Communication, Process Distance,
Hierarchical Algorithm, Ring Algorithm

I. INTRODUCTION

Clusters of multi- and many-core nodes are currently the

most popular platform in high performance computing.

With the increasing number of computing resources and

memory hierarchies integrated into a single compute node,

the distribution of MPI processes inside a node become

critical in order to fully exploit the node’s capabilities.

Moreover, even if not yet standardized by the MPI Forum,

most of the MPI libraries provide proprietary interfaces to

bind MPI processes to specific cores.

A lot of research has been done to adjust the process

layout based on an application’s communication pattern and

underlying hardware architecture. MPIPP [1] provided a

profile-guided approach to automatically find the optimal

mapping between MPI processes and resources to minimize

the cost of point-to-point communications for arbitrary mes-

sage passing applications. Emmanuel Jeannot et al. proposed

a near-optimal process placement algorithm called “tree

match” that maps processes to resources [2]. E.g. a profiling

file shows point-to-point communication between pairs of

processes: (0, 1), (2, 4), (3, 6) and (5, 7) occupies the most

percentage in MPI communication time. The process place-

ment module will arrange these pairs of processes as closely

as possible with respect to physical distance as depicted

on Figure 1: pairs of processes are bound to two cores on

the same socket. As a bridge between MPI libraries and

applications, these intelligent process placement libraries

help users find an optimal process placement in order to

reduce the communication cost of the whole application.
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Figure 1. An example of an in-order binomial broadcast tree spanning over
8 processes on quad-socket dual-core nodes, which are placed following
applications’ communication pattern.

Although these intelligent process placements have the

potential to significantly decrease the overall communication

time, their methodology is based on a pure point-to-point

communication pattern, ignoring the different communica-

tion topologies used by MPI collective communications.

As most of the collective communications, exhibit specific

communication patterns which are allowed to adapt to the

underlying architectural features (split binary tree, binomial

tree, chain and etc.), there is a mismatch between the MPI in-

ternal collective topology (which is usually created based on
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the processes MPI ranks) and the external process placement

decision. Under the same process placement in Figure 1, let’s

assume a broadcast operation with these 8 processes on 8

cores in the application. Based on MPI ranks, a binomial

broadcast tree is constructed as in Figure 1. Every edge along

the critical path(P0 → P4 → P6 → P7) in the broadcast

tree crosses the longest physical distance, a bus connecting

each socket. Obviously this binomial broadcast tree will lose

its advantage and efficiency due to a mismatch between

broadcast topology, underlying hardware architecture, and

process placement.

The topology of MPI collective communication varies

during the life cycle of application, because the commu-

nicator in the application can change, and the order of the

processes participating in each collective communication is

dynamic. As the process placement is fixed for an applica-

tion, even with the help of the previously described tools,

without precise knowledge of the collective communication

algorithm to be used for a specific collective in a communi-

cator, globally optimizing the parallel applications become

an very difficult task. However, if internally the MPI library

takes advantage of the architectural features of the hardware

environment, and adapts its own communication algorithms

to maximize the hardware capabilities, solving the process

placement problem becomes simpler.

In this paper, we propose a general framework for MPI

implementations to detect, express, and take advantage of the

runtime process distance. Based on runtime process distance

information in the context of each node, the MPI library

constructs an adaptive communication topology for each

collective operation, and this topology reflects the underlying

hardware architecture. This distance-aware collective com-

munication always provides optimal performance regardless

of process placement of the members participating in the

communicator. This automatic approach at the MPI level

provides further optimization and complements the intelli-

gent process placement approach without user intervention.

The rest of this paper is organized as follows: Section II

provides some background about collective logical topol-

ogy and topology-aware MPI communication. Section III

formulates and outlines the extent of the problem between

process placement, underlying architecture and the runtime

communicator. Then, Section IV describes our framework

designed to combine process distance information with col-

lective communication topologies, and two distance-aware

adaptive collective operations (Broadcast and Allgather) are

implemented in Open MPI’s KNEM collective communi-

cation component as examples. A performance study is

presented in the Section V, substantiating the benefits of

our approach when compared to the Open MPI’s default

optimized collective component. Finally, Section VI con-

cludes the paper with a discussion of the results and future

directions.

II. RELATED WORK

One of the most straightforward ways of improving

the performance of collective communications is to adopt

specialized communication topologies (linear, chain, split

binary tree, binomial tree and etc.) [3], based on the network

properties, such as latency and bandwidth, and collective

communication requirements (amount of data, number of

participating peers). Both MPICH2 [4] and Open MPI [5]

implemented optimized collective algorithms and provide

a runtime selection framework to determine the optimal

algorithms based on message and communicator size, e.g.

tuned collective in Open MPI. These algorithms actually

use “fixed” topologies decided by pre-defined fan-out and

communicator size. Additionally, most of these fixed topolo-

gies are built based on MPI’s logical ranks, and are totally

agnostic of process placement. It’s impossible for these

algorithms to provide stable and optimal performance under

all circumstances: any process placement, any underlying

hardware architecture, and dynamic communicators.

One of the first articles to depict the importance of process

placement [6], describes the remapping to MPI libraries

according to underneath hierarchical architecture such as

clusters of SMP nodes. The proposed methodology, based on

graph partitioning, generates a multi-level hierarchical view

of the hardware environment. Similar approaches found their

way into MPI implementations a few years later when the

first platform-specific topology-aware vendor MPI libraries

appeared on the market [6], [7].

Several research teams have investigated topology-aware

collective algorithms on specific platforms: cluster of clus-

ters, Grids and InfiniBand clusters. Thilo Kielmann et al.
proposed MagPIe [8] which is a hierarchical MPI collective

communication operations for cluster of clusters. A similar

topology-aware multilevel approach is introduced in [9]

to tackle collective operations in Grids. D.K.Panda et al.
proposed SMP-aware [10] or topology-aware [11] collective

operations over InfiniBand clusters. These topology-aware

algorithms achieved a significant performance increase using

knowledge about the underlying networks or hardware archi-

tecture. However, most of these algorithms only tackle spe-

cial cases, and some of them are difficult to port in general

MPI libraries due to a lack of a generalized MPI framework

to express and detect distances between processes. With

more hierarchies introduced into nodes or clusters, there is

an urgent demand for a general framework for MPI to detect

and express process layouts based on process distance.

Teng Ma et al. proposed a framework to select the optimal

communication parameters according to run-time process

distance between peers for MPI intra-node point-to-point

communication in [12]. Compared with point-to-point com-

munication, collective communication is more demanding

about the physical topology information, and more sensitive

about memory hierarchies, and distance between processes.
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With the knowledge of such hardware information, efficient

scheduling can be implemented in specific collective opera-

tions to balance memory accesses across memory controllers

and maximize the overall collective communication band-

width.

The Portable Hardware Locality (hwloc) [13] is a project

providing a much needed portable abstraction of hierarchical

topology of modern CPUs, including NUMA nodes, sock-

ets, caches, cores, and simultaneous multithreading. Hwloc

software package has been widely adopted in state-of-art

MPI libraries: Open MPI, MPICH2, and MVAPICH2. Our

run-time process distance detection framework is also based

on the information collected by hwloc.

III. MISMATCH PROBLEM
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Figure 2. Bandwidth Comparison of MPICH2-1.4 Broadcast Operation
on Zoot between 4 binding cases:round-robin, user:0..15, CPU and cache.

Nowadays most of the MPI implementations recognize

the process placement problem. In order to alleviate the

issue, they propose proprietary interfaces to bind processes

to resources. For example, Hydra, the process manager in

MPICH2, provides users with options like ‘user’, ‘rr’, ‘cpu’,

and ‘cache’. “-binding user” is a user-defined binding. “-

binding rr” is based on a round-robin mechanism using the

operating system (OS) processor IDs. MPICH2 can also

provide some cpu-aware or cache-aware allocation strategies

such as “-binding cpu” that packs processes as closely as

possible to each other with respect to CPU cores, and “-

binding cache” that does it respectfully to the cache layout.

Figure 2 shows a bandwidth comparison of Broadcast

operation (MPICH2 1.4), on an SMP node between four dif-

ferent binding strategies: round-robin(rr), user-defined bind-

ing(user), CPU and cache. The experimental setup consists

of a quad-socket quad-core Intel Tigerton processor with a

single memory controller on the front side bus (FSB), where

logical consecutive core IDs belong to different sockets.

Round-robin binding uses the logical order provided by

the OS. MPI processes (ranks from 0 to 15) are bound to

processor units(PU) in order (P#[0..15]), making neighbor

processes always connected directly over the single memory

FSB. ‘user:0..15’ binding strategy has the same binding map

with round-robin binding on Zoot. Numbers behind ‘user’

are just PU’s physical identities provided by the OS. Binding

by ‘cpu’ and ‘cache’ gives out a different map from the

round-robin strategy on Zoot. Neighbor processes (close in

MPI ranks) are also close from each other, with respect to

the number of buses to traverse.

In Figure 2, the same MPICH2’s broadcast algorithm pro-

vides different performance under different process place-

ment on Zoot. Compared with the ‘cpu’ and ‘cache’ cases,

the bandwidth is reduced by up to 35% in the round-robin

and user-defined cases. As MPICH’s broadcast algorithm

constructs the broadcast topology according to MPI’s logical

ranks, which does not include information about the physical

topology, ‘rr’ and ‘user:0..15’ place the processes in a way

that forces the broadcast algorithm to transfer data several

times over the FSB, and therefore reducing the possibilities

of cache reuse. On the opposite way, in the ‘cpu’ and

‘cache’ cases, the MPI library places the MPI ranks in a

compact way: neighbor processes run on physically close

cores. It turns out that the way the MPICH2 broadcast

algorithm builds its internal tree matches this distribution

scheme, which leads to more cache reuse and therefore a

decreased communication time. While this worked for the

MPI COMM WORLD communicator used in the tests, it is

obvious that a communicator with the rank rearranged would

have shown significantly different performance in the same

process placement scenario. Moreover, the same algorithm

building the internal communication tree differently, would

not have reached the same performance level. Such issues

are not particular to the MPICH2 library, and they can be

found in other MPI implementations.

The fundamental problem in this mismatch phenomenon

lies in MPI libraries’ ignorance of inter-process distance; the

collective communication topology is constructed according

to logical MPI ranks not based on physical distances. In this

context, even the most highly balanced and tuned algorithms

will suffer from varied communication patterns, underlying

hardware architecture, and process placement. Therefore,

MPI libraries must be aware of runtime process placement,

and directly reflect the physical topology on the communi-

cation pattern of the collective algorithms. Although MPI

libraries can’t modify runtime process placement, they can

re-construct the internal communication topology according

to the distance between cores on which processes run,

instead of simply the MPI ranks, to match the underlying

physical topologies.

The approach presented in this paper will automatically

build the best fitting collective topology for each commu-

nicator, depending on the processes involved in the com-

municator, the collective algorithms in use, the hardware

capabilities and the process placement.
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IV. FRAMEWORK

A. Distance Between Processes

The collective framework described in this paper bases

its decisions on the distance between processes. Process

distance reflects how many functional units, buses, caches,

memory controllers and etc. messages travel through from

source memory to destination memory. In fact, this distance

is computed under the assumption that each process is bound

to a particular computing unit (core), and therefore the

distance is relative to the core placement at the hardware

level. As a result, the distances can be measured using the

memory and physical hierarchies. We use four factors to

compute the distances between two processes (or cores as

explained above): (1) sharing any caches; (2) on the same

physical socket; (3) sharing any memory controllers; and

(4) on the same physical board. To simplify the algorithm

design, processes sharing any caches (L1, L2 or L3 caches)

are considered as being at distance of ‘1’, regardless of

the shared cache hierarchy. For processes without common

caches, we check whether or not they can satisfy conditions

(2) and (3). If (2) and (3) are both satisfied, process are at

distance ‘2’. If (2) is unsatisfied and (3) is satisfied, process

are at distance ‘3’. If (2) is satisfied and (3) is unsatisfied,

process are at distance ‘4’. If (2) and (3) are both unsatisfied,

the distance is solely determined based on condition (4).

Processes on the same board are at distance of ‘5’, otherwise

the distance is considered as being ‘6’. Distance range can

be further extended if network-style routers or switches

(Intel QPI or AMD HT) are interconnecting NUMA nodes

or boards. At the inter-node level, the distance can take

into account network adapters, links, and even switches and

routers, by a simple and natural extension. However, in the

context of this paper we limit the distance to ‘6’.

If we look at two particular hardware generations, we can

exemplify the distances as follows. Zoot, described in detail

in Section III, is a 16 core machine with 32GB of memory.

The system has four sockets with a quad-core 2.40 GHz

Intel Xeon Tigerton E7340 featuring 4 MB L2 caches shared

between pairs of cores. A single SMP memory controller

in the north-bridge chipset connects all the sockets with

the global shared memory. There are several scenarios for

distances between processes on Zoot. MPI processes can be

bound to different cores on the same die, sharing a L2 cache

(distance ‘1’), different dies on the same socket (distance

‘2’) or on different sockets (distance ‘3’).

With more cores, memory/cache hierarchies, and network-

style interconnects integrated into modern multi-core proces-

sors, distance between processes becomes more complex. IG

is a 48-core machine with 128GB of memory depicted as

Figure 3. The system is composed of 8 sockets with a six-

core 2.8 GHz AMD Opteron 8439 SE, 5 MB L3 caches and

16 GB memory per NUMA node. The sockets are further

divided as two sets of 4 sockets on two separate boards

NUMANode #0 (16GB)

Socket #0

NUMANode #1 (16GB)

Socket #1

NUMANode #2 (16GB)

Socket #2

NUMANode #3 (16GB)

Socket #3

NUMANode #4 (16GB)

Socket #4

NUMANode #6 (16GB)

Socket #6

NUMANode #5 (16GB)

Socket #5

NUMANode #7 (16GB)

Socket #7

L3 #0 (5118KB)

L3 #1 (5118KB)

L3 #2 (5118KB)

L3 #3 (5118KB)

L3 #4 (5118KB) L3 #6 (5118KB)

L3 #5 (5118KB) L3 #7 (5118KB)

Core #0 Core #1

Core #2 Core #3

Core #4 Core #5

Core #6 Core #7

Core #8 Core #9

Core #10 Core #11

Core #12 Core #13

Core #14 Core #15

Core #16 Core #17

Core #18 Core #19

Core #20 Core #21

Core #22 Core #23

Core #24 Core #25

Core #26 Core #27

Core #28 Core #29

Core #36 Core #37

Core #38 Core #39

Core #40 Core #41

Core #30 Core #31

Core #32 Core #33

Core #34 Core #35

Core #42 Core #43

Core #44 Core #45

Core #46 Core #47

Figure 3. IG architecture, A node with AMD Istanbul 8-socket 6-core
processors with 8 NUMA nodes each with 16GB memory.

connected by an interlink. Each core on IG has a 64KB L1

cache and a 512KB L2 cache not shared with other cores.

Figure 3 trimmed these L1 and L2 caches to save space.

Six cores inside one socket share L3 cache and one memory

controller. Distances between processes bound to the 6 cores

of the same socket are equally distance ‘1’. Processes on

different NUMA nodes/sockets but on the same board, e.g.

between core#0 and core#12, are assigned the distance ‘5’.

Processes bound to cores on different boards, e.g. between

core#0 and core#24 are at distance ‘6’.

Based on the runtime process distance information,

we construct our distance-aware collective communica-

tion framework. As a proof of concept, we implemented

two distance-aware collective communications: Broadcast

and Allgather as an extension to the KNEM collective

component. KNEM collective [14] is implemented as an

Open MPI’s intra-node collective component, which is di-

rectly based on kernel single-copy module: KNEM. The

details about KNEM copy can be found in the papers [15],

[16]. KNEM-based collectives mainly accelerate large mes-

sages’ collective communication, and not small messages,

because trapping into the kernel and distributing cookies

introduce an overhead (which is equivalent to a 16KB

broadcast or a 2KB Allgather on the platforms described

above) [14].

B. Distance-Aware KNEM Broadcast

Algorithm 1 shows how the broadcast tree is constructed

based on the distance between processes. Vertexes in the

graph stand for processes participating in the communicator.

Edge weight is the distance. This algorithm is similar to the

Kruskal minimum spanning tree [17], with a single major

change: the order of edges in the queue Q. The edges in the

queue are sorted in an increasing order by weight. For the

edges with the same weight, we check whether or not one

of the edges includes the vertex of the root process. Edges
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including the root process will be moved in the front of

queue. For all edges with identical weight covering the root

process, we order them by their non-root vertex’s MPI rank

in a non-decreasing order. For edges with the same weight

without root vertex, we order them firstly by small MPI

rank in one vertex and then by big rank in another vertex.

The MAKE-SET(v) function constructs a set for vertex v.

The FIND-SET(v) function returns the head node of the set

including vertex v, which is the root process if it includes it,

or a process (vertex) with the smallest MPI rank in each set

if not. After sorting, the root process, or the process with

the smallest MPI rank in the set, will be selected as a leader

of each set. The union of all the sets build a tree with the

minimum depth among all minimum weight spanning trees

based on this sorting.

Algorithm 1 Distance-Aware Broadcast Tree Construction

Define a forest T ← ∅
for each vertex v ∈ V [G] do

MAKE-SET(v)

end for
First store the edges of E in queue Q by non-decreasing

orders of weight, whether including root and then MPI

ranks.

for each edge (u, v) ∈ E from Q and T has fewer than

n-1 edges do
if FIND-SET(u) �= FIND-SET(v) then

T ← T ∪ (u,v)

UNION(u,v)

end if
end for
return T

Figure 4 shows an example of distance-aware broadcast

with 12 processes across 12 cores distributed among 4

NUMA nodes under a random binding case. NUMA node

0 and 1 are on the same board connected to another board

containing NUMA node 2 and 3. There are three kinds of

process distances. Processes on the same NUMA node are

at the shortest distance (2). Processes on different NUMA

nodes but the same board are at distance (5). The longest

distance (6) is between processes residing on different

boards connected by a slow network. The distance-aware

broadcast constructs a spanning tree with root process P5 as

depicted in Figure 4. The steps from (1) to (11) in Figure 4

show a sequence of union between sets. The distance-aware

broadcast algorithm minimizes the number of messages

crossing the slowest links. In the case of Figure 4, only

one chunk of message crosses the links that interconnect

two boards. Between processes on the same distance set,

the ‘leader’ of each set is the process with the smallest

MPI rank or the root process(any other heuristic results in

an equivalent outcome). These leader processes are used to

communicate with processes on the upper levels with the

shortest distance. The processes at the same distance with the

leader process are connected directly to the leader process

of each set. This guarantees a tree with a minimum depth

among all minimum weight spanning trees attributable to

the order of the edges in the queue.

In the case of large messages, a pipeline can be applied

along the paths of a tree containing intermediate nodes, to

reduce waiting time between processes on tree’s intermediate

nodes or leaf nodes. E.g. along the path of P5 → P1 →
P7 → P10 in Figure 4, the message is split into multiple

chunks, and once such a piece of data is received, a process

will notify its children in the tree, creating a pipeline effect.
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Figure 4. An example of a distance-aware broadcast with 12 processes
on 4 NUMA nodes with random binding between processes and cores.

The distance-aware broadcast topology is different from

‘fixed’ topologies, which are statically decided based on

the number of nodes and the expected fan-out. Our topol-

ogy is dynamically adapting, varying with runtime process

distribution, underlying architecture, and processes in the

communicator used by the collective communication. It

always provides the optimal topology regardless of process

placement.

C. Distance-Aware KNEM Allgather

Algorithm 2 shows how an allgather ring topology is

constructed based on the process distance. Similar to the

broadcast algorithm, the distance-aware allgather uses a

greedy algorithm to construct the ring. The edges in the

queue Q are in increasing order, first by weights, and then

by MPI ranks. Physical neighbor processes are clustered

together in this greedy algorithm. Only processes on edges

between sets will communicate with each other via the

slower links.

Figure 5 shows an example of distance-aware KNEM All-

gather operations with 8 processes bound to a quad-socket

dual-core node under a random binding case. Processes are

organized in a ring structure and physical neighbor processes

are arranged together along the ring. A local memory copy

is executed at step (1) from sender buffer to receiver buffer

with an offset of rank×type size×count. This is the same
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Algorithm 2 Distance-Aware Allgather Ring Construction

Define a forest R ← ∅
for each vertex v ∈ V [G] do

MAKE-SET(v)

end for
First store the edges of E in queue Q by non-decreasing

orders of weight, and then MPI ranks.

for each edge (u, v) ∈ E from Q and R has fewer than

n-1 edges do
if FIND-SET(u) �= FIND-SET(v) and fan-out of vertex

u and v in each set is less than 2 then
R ← R ∪ (u,v)

UNION(u,v)

end if
end for
R ← R ∪ (u’,v’), in which u’ or v’ are head or tail nodes

in R.

return R
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Figure 5. An example of distance-aware Allgather with 8 processes on
a quad-socket dual-core node with random binding between processes and
cores.

with the step (1) in Figure 5. After finishing step (1), each

process sends its current working index (rank in step (1))

by out-of-bound transfer to its right neighbor to notify the

neighbor that a buffer is available to be retrieved. KNEM

copy will handle this one-sided RMA-style pull operation.

Step (2) will be repeated N − 1 times until all buffers

are copied, where N is the communicator size. The whole

operation works like an out-of-order pipeline.

Let us take an example of Allgather operation with

48 processes bound to IG’s 48 cores 3. No matter what

process placement, KNEM Allgather always constructs a

ring and organizes physical neighbor MPI processes together

along the ring. Processes on the same socket/NUMA node

(distance ‘1’), are clustered as a set; 8 sets are formed and

processes in each set are arranged with a non-decreasing

order of MPI ranks. These 8 sets are connected in a ring

following the order [2, 0, 1, 3, 4, 6, 7, 5] of NUMA

node identities. Physical neighbor processes are organized

as closely as possible. Left and right neighbor process ranks

are calculated in the way described above.

A theoretical analysis of the memory accesses is shown

for a ring-style allgather operation. Let’s assume an All-

gather operation with N × P processes unfolded across N
NUMA nodes with P cores in each NUMA node. Each

read/write access touches an amount of type size × count
memory. Each NUMA node has P ×P ×N memory reads

and P ×P ×N memory writes. The overall remote memory

accesses along the slow links are as small as possible in

this Allgather, which is the product of the number of links

between NUMA nodes, and P×N−1 (links×(P×N−1)).
Only processes on the edge of each set have remote memory

accesses. This distance-aware KNEM Allgather is perfectly

balanced in terms of workloads to each process and memory

accesses to each NUMA node. Each process has P × N
times of memory copies. And there is no hot-spot for any

memory controller and memory accesses are distributed

evenly across memory controllers. The overhead of this

algorithm lies in the N × P times synchronization for each

process to notify its right neighbor when its buffer is ready

for transfer. Compared with a large data transfer time, this

synchronization overhead is negligible in the intra-node case.

V. EXPERIMENTS

A. Broadcast and Allgather
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Figure 6. Bandwidth Comparison for Broadcast for Open MPI’s tuned
and KNEM collective on IG between 2 binding cases:contiguous case and
cross socket case.

We use IG (see Figure 3) as our main experimental plat-

form, due to it’s complex hardware architecture (described

in Section III). It represents a wide variety of multi-core

and many-core designs, with several levels of memory hier-

archies and physical distances, and can greatly benefit from

a distance-aware collective communication framework. As

distance-aware algorithms are only implemented in KNEM

collective component, our experiment focuses on intra-node
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Figure 7. Bandwidth Comparison for Allgather for Open MPI’s tuned
and KNEM collective with 48 processes on IG between 2 binding
cases:contiguous case and cross socket case.

communication. The software setup includes KNEM version

0.9.5 [18]. The Intel MPI benchmark suite IMB-3.2 [19]

was used to assess the difference between the collective

components. Because KNEM collectives have a smaller

memory footprint than other components, cache reuse in

the benchmark was disabled with the off-cache option for

a fair comparison. We used the Open MPI’s default collec-

tive component, tuned, to compare against. This collective

component is not distance-aware, but it is considered as

a state-of-the-art implementation for intra-node collective

communications. In this particular context (on a single

shared memory node), tuned collective is configured based

on SM/KNEM BTL (byte transfer layer) as point-to-point

communication underneath. SM/KNEM BTL uses KNEM

copy to speedup point-to-point communication for messages

larger than 4KB. Copy-in/copy-out based on shared memory

is used in SM/KNEM BTL to deliver messages smaller than

4KB. In terms of point-to-point performance, the underlying

technology used by the Open MPI tuned collective and

our distance-aware collective component are similar, and

therefore any difference in performance is expected to come

from the factors non-related to the point-to-point protocol.

In order to minimize the number of results, and to present

a clear picture, we decided to compare two possible process

placement cases: a contiguous case and a cross socket case;

they represent what is expected to deliver the best, and

respectively the worst, performance for a non distance-

aware collective component (such as tuned). The contiguous

case is packing processes as closely as possible, similar to

MPICH2’s ‘cpu’ or ‘cache’ binding methods. E.g. in IG’s

contiguous case, 48 MPI processes are bound in the same

order with core identities: with process i bound to core i in

Figure 3. In the cross socket case, MPI processes from rank

0 to 47 are bound to cores in an order that maximizes the

inter-socket exchanges. More precisely in the IG case the

core c holds the MPI rank r iff c = (r mod 8)×6+�r/8	.

Figure 6 shows the bandwidth comparison for the broad-

cast collective from Open MPI’s tuned and KNEM collective

on IG between the contiguous case and cross socket case.

Tuned Broadcast’s performance is not sensitive to process

placement when message size is smaller than 1KB. When

the message size is larger than 256KB, the difference from

different binding cases become obvious. The bandwidth loss

for Open MPI’s tuned collective in cross socket case reaches

more than 45%, when compared with in contiguous case.

On the opposite spectrum, KNEM collective provides stable

bandwidth regardless of process placement. The variance

between contiguous and cross socket cases is less than

14% in KNEM collective, and can be attributed to the

increasing cost of these synchronizations in the cross-socket

case. Once the messages are large enough, the cost of this

synchronizations become insignificant, and the performance

of the cross-socket case is slightly better, even as the tree

constructed in both cases is similar.

Figure 7 shows the bandwidth comparison of Allgather

operations of Open MPI’s tuned and KNEM collective on

IG between contiguous case and cross socket case. The

bandwidth variance of tuned Allgather between different

binding cases can reach up to 58%, significantly more than

in broadcast communication. This is because an Allgather

is more communication-intensive than a Broadcast. In cross

socket case, all memory accesses between neighbors in tuned

Allgather are remote memory accesses, which are slower

than local memory accesses. KNEM Allgather always pro-

vides a stable bandwidth regardless of the process binding.

Using the process distance information, KNEM Broadcast

and Allgather construct topologies which reflect memory

hierarchies and physical layout. No matter what binding

map between cores and processes is decided at the MPI

application level or in the process placement module, the

distance-aware algorithms always provide stable and optimal

bandwidth.

B. Discussion

The overhead of our distance-aware framework comes

mostly from sorting the edges between processes on the

topology information. Performance from Figure 6 and Fig-

ure 7 includes the overhead of collecting process placement

information and constructing the collective topologies. This

overhead of sorting up to thousands of edges is minimal

in intra-node cases. However, on a large scale system, it’s

difficult for these greedy algorithms to scale well with

fully-connected graphs. Actually, only directly connected

processes are helpful to construct topologies, e.g. father,

children, siblings and etc. In future work, we will explore

how much process placement information is necessary for

each process to construct an optimal or near-optimal topol-

ogy. A distributed algorithm will be a feasible approach for

a large scale system.

There is another question about whether any “distance”

information is equally important as another, for a distance-

aware collective component. If some of the hardware infor-
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Figure 8. Bandwidth Comparison of KNEM Broadcast on Zoot with 16
processes over two different topologies:4 sets or linear, between 2 binding
cases:contiguous case and cross socket case.

mation can be excluded when the internal topology is built,

without losing accuracy on the decision, the decision will be

greatly simplified on the next generation architectures, which

are expected to have deeper memory hierarchies. Figure 8

shows a bandwidth comparison of a KNEM Broadcast on

Zoot with 16 processes over two topologies: two levels

hierarchical tree with 4 sets and the linear topology. When

considering the distance between sockets, which is distance

‘3’ on Zoot case, 16 processes on Zoot’s 16 cores are split

into 4 sets. Correspondingly, a two level hierarchical tree

is built based on these four sets following the approach

described in Section IV-B. Ignoring the distance ‘3’ set, a

linear topology will be generated making all non-root pro-

cesses access the root’s buffer simultaneously. The pipeline

is unnecessary in a linear algorithm because all non-root

processes are leaf nodes directly connected to the root node.

From Figure 8, KNEM linear topology outperforms

KNEM hierarchical topology. Further splitting into 4 sets

according to distance ‘3’ does not help KNEM hierarchical

Broadcast on this architecture. The most plausible reason is

that, although these 4 sets of processes reside on different

physical sockets, they share a single memory controller. If

we look at the outcome of a broadcast communication, we

can describe it as a certain number of reads from the single

input buffer (the buffer at the root process), and a number

of writes (flushing back into memory the buffers on each

process). As a result, the single memory controller will be

overloaded with write requests, and the potential benefit we

can get on the read side by taking advantage of memory

hierarchies, is totally annihilated. Therefore, splitting the

broadcast tree on Zoot does not achieve extra bandwidth but

increases the execution path by increasing the depth of the

hierarchical tree. So distance ‘3’ is of little importance for

large message(bigger than 16KB) broadcast operation on this

SMP node. However, small messages are still sensitive to

physical distance between sockets, and distance ‘3’ becomes

useful again. This clearly shows that the message size is not

only important for the selection of the collective algorithm,

but also for the selection of how to map this topology on a

particular hardware architecture.

More important information can be observed by compar-

ing the Figure 2 presented in Section III with the above

mentioned Figure 8. On the same environment, Zoot, the per-

formance of our distance-aware broadcast communication,

outperforms both Open MPI and MPICH2 implementations,

and is independent of the process placement.

VI. CONCLUSION AND FUTURE WORK

The current trend in HPC is toward a large increase in

the non-uniformity of a single node, both from the number

of cores and the number of memory/cache hierarchies. This

leads to more complex architectures, and more challenging

scenarios for harnessing the full potential of such environ-

ments. As the most widely used HPC software, MPI libraries

must have a complete view of process distance to construct

optimal topologies to allow collective algorithms to work in

an efficient way. This remains true even in the case where

the process distribution is optimally decided to match the

most common communication pattern in the application.

In this paper, we have presented a collective communi-

cation framework combining process distance, underlying

hardware architecture, and runtime communicator composi-

tion together. We supplemented this framework with two

distance-aware collective communications, Broadcast and

Allgather, as examples. Moreover, we have demonstrated

that our distance-aware collective component provides stable

and optimal performance, regardless of process placement,

significantly outpacing the state-of-the-art collective algo-

rithms, in both Open MPI and MPICH2 libraries.

In future work, we will extend this distance-aware ap-

proach to include other collective communications such as

Reduce and Allreduce. We plan to make all Open MPI’s

collective components distance-aware, not just intra-node

communication like KNEM, SM collective, etc, but also

clusters of multi-core mixing inter-node and intra-node com-

munication together. To reach this goal, firstly we will extend

the information provided by the HWLOC software to include

a view of the global process placement, taking into account a

simplified view of the network infrastructure. Secondly, we

need to trim some unnecessary information making distance-

aware framework scalable. A distributed algorithm to figure

out direct connections instead of global topologies for each

process will be more feasible for large scale systems. A

trade-off between optimal topologies and available process

placement information will be an interesting discussion.
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